Synthesis of New Rutheniun Vinylidene Complexes: Characterization by NMR Techniques

A.L. Bogado, C. Daolio^{*}, A. G. Ferreira, A. G. Corrêa, A. A. Batista

Departamento de Química, Universidade Federal de São Carlos, São Carlos-SP, Brazil daolio@dq.ufscar.br

Keywords: ruthenium; vinylidene; NMR techniques

Abstract: The activation of several functional alkynes by ruthenium (II) complexes is one of the most important routes for synthesis of vinylidene complexes. Some metal vinylidenes (M=C=CHR) have been used in many catalytic reactions of the following types: dimerisation of alkynes, nucleophilic addition and radical cycloaromatization. Direct coupling of 1-alkynes represents an easy route to unsaturated dimeric species, and these are valuable precursors for the synthesis of natural products as well as interesting building blocks for further organic modifications. Instead of using X-ray techniques, NMR experiments were used for characterization of these complexes. The $^{31}P_{1}^{1}H_{1}$ NMR experiment shows two dublets for vinylidene complexes like $[RuCl(dcype)(bipy)(=C=CHPh)](PF_{6})$ (1) and a singlet for $[RuCl(PPh_3)_2(Mebipy)(=C=CHPh)](PF_6)$ (2). These signals suggest that 1 is a typical cis isomer while 2 is a trans isomer. The ¹H-³¹P HMBC experiments were quite effective to prove the presence of vinylidene group (**P**-Ru=C=C**H**R) through of ${}^{4}J_{H,P}$ for all compounds, and the ${}^{1}H{}^{-1}H$ aCOSY experiment for these complexes showed, in detail, the correlation for the N-heterocylic ligand. It was supposed that some hydrogens were downfield because of the effect of the electron density of the chlorine atom, which is a good π donor. Therefore, for both complexes, the chemical shifts were exchanged due to deshielded anisotropy effects from the vinylidenic π system; DPFGSE-NOE was performed and the unambiguous assignment was possible. Thus, NMR techniques showed to be a powerful tool for the characterization of inorganic compounds.

The activation of several functional alkynes by ruthenium (II) complexes is one of the most important routes for synthesis of vinylidene complexes. Metal vinylidenes (M=C=CHR) have emerged as useful precursors with unusual reactivity for a variety of organic reactions. With eletrophilic ruthenium (II), complexes [RuCl₂(P)₂(N-N)] and [RuCl₂(P-P)(N-N)] {where P= triphenylphosphine (PPh₃), P - P = 1,2-bis(dicyclohexylphosphine)etane (dcype), N-N = 2,2'-bipyridine (bipy) or 4,4'dimethyl-2,2'-biyiridine (Mebipy)} in the presence of phenylacetilene and KPF₆ react to order the activation of alkyne to afford ruthenium vinylidene complexes.

Metal vinylidenes have been applied in many catalytic reactions of the following types:

dimerization of alkynes, [2 + 2] cycloaddition, nucleophilic addition to alkynes and radical cycloaromatization. Direct coupling of 1alkynes represents an easy route to unsaturated dimeric species, in particular, 1,3and 1,4- disubstituted enynes. These are valuable precursors for the synthesis of natural products as well as interesting building blocks for further organic modifications.¹

A similar procedure used to obtain precursors to vinylidene complexes was described by Batista and co-workers², and the vinylidene complexes *cis*-[RuCl-(dcype)(bipy)(=C=CHPh)](PF₆) (1) and *cis*-[RuCl(dcype)(Mebipy)(=C=CHPh)](PF₆) (2) (Figure 1) were obtained from the *trans*-[RuCl(PPh₃)₂(bipy)(=C=CHPh)](PF₆) (3) and

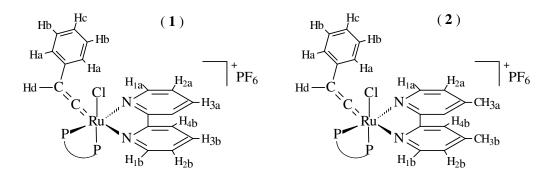


Figure 1. Structures for complexes 1 and 2.

from the trans- $[RuCl(PPh_3)_2(Mebipy)(=C=CHPh)](PF_6)$ (4), by exchanging the phosphine ligands.

Instead of using X-ray techniques we used NMR experiments to analyze these complexes. All NMR spectra were run on a Bruker Avance DRX 400, at 298K, using TMS and H_3PO_4 (85%) as internal references for ¹H, ¹³C and ³¹P respectively.

³¹P{¹H} NMR spectra show two dublets for **1** (δ 61,8 and 58 ppm, ${}^{2}J_{PP} = 14,2$ Hz) and **2** (δ 56,8 and 53 ppm, ${}^{2}J_{PP} = 14,5$ Hz) while for **3** and **4**, a singlet at δ 21 ppm and δ 22 ppm respectively is observed. These signals

suggest typical *cis* isomers for **1** and **2** and *trans* isomers for **3** and **4**. The chemical shift has a straightforward relationship with the basicity of the P-donor ligands.

¹H-³¹P HMBC experiments were quite effective to prove the presence of a vinylidene group (**P**-Ru=C=C**H**R) through ⁴J_{H-P} for all compounds, which can be confirmed from the ¹H NMR triplet for each hetero coupling in the range from 3,3 to 3,7 Hz. The ¹H-¹H gCOSY experiments for complexes **1** and **2** showed in detail the correlation for N-heterocylic ligand and the aryl group from the acetylenic ligand, as described in Table 1.

Complex 1		Complex 2	
Hydrogen	δ(ppm), m, J(Hz)	Hydrogen	δ(ppm),m, J(Hz)
Ha	7,39 (d) 8,72	Ha	7,39 (d) 8,3
Hb	7,28 (t) 7,58	Hb	7,27 (t) 7,54
Hc	7,10 (t) 7,58	Hc	7,09 (t) 7,54
H _d	4,90 (t) 3,5	H _d	4,8 (t) 3,7
H _{1a}	9,91 (d) 5,46	H _{1a}	9,69 (d) 5,68
H _{2a}	7,55 (t) 5,46	H_{2a}	7,31 (d) 5,34
H _{3a}	8,05 (t) 7,99	Mea	2,53 (s)
H_{4a}	8,34 (d) 7,99	H_{4a}	8,16 (s)
H _{1b}	8,85 (d) 5,38	H _{1b}	8,64 (d) 5,68
H _{2b}	7,97 (t) 5,38	H _{2b}	7,73 (d) 5,51
H _{3b}	8,20 (t) 7,99	Me _b	2,59 (s)
H_{4b}	8,38 (d) 7,99	H_{4b}	8,18 (s)

Table 1. Chemical Shift, multiplicity and coupling constants for complexes 1 and 2.

It is suggested that the hydrogens from H_{1a} to H_{4a} were downfield because of the electron density from the phosphine ligand, which is a good π donor. Therefore, for both complexes, the chemical shifts were confirmed by DPFGSE-NOE, and it was found that H_{1a} transfer magnetization to H_{2a} , H_a and H_d , while H_{1b} transfers only to H_{2b} . These results show that H_{1a} is more unshielded than H_{1b} , which can be attributed to the deshielded anisotropy effect from the vinylidenic π system. Thus, NMR techniques showed to be a powerful tool for the characterization of these compounds.

Acknowledgements

The authors acknowledge CAPES, CNPq and FAPESP.

References

- 1. K. Melis, D. De Vos, P. Jacobs, F. Verpoort, *J. Organ. Chem.* **30** (2002) 1
- A. A. Batista, M. O. Santiago, C. L. Donnici,
 I. S. Moreira, P. C. Healy, S. J. B. Price, S.
 L. Queiroz, *Polyhedron* 20 (2001) 2123.