Extension of DOSY to ⁷⁷Se NMR

F. Hallwass*, R. O. Silva, S. M. C. Gonçalves, P.H. Menezes, A. M. Simas

Departamento de Química Fundamental - UFPE - Recife - Pernambuco, Brazil hallwass@ufpe.br

Keywords: 77Se NMR; DOSY

Abstract: The natural abundance of ⁷⁷Se is 7.5%, approximately six times greater than ¹³C. Furthermore, the sensitivity of ⁷⁷Se nucleus is three times higher than that of ¹³C. Thus, ⁷⁷Se is an interesting nucleus for NMR studies - DOSY experiments included. Accordingly, we prepared a sample with both non-enriched diphenyldiselenide, and selenophene in CDCl₃. ⁷⁷Se DOSY experiments were performed at room temperature (25°C) at a frequency of 57,24 MHz using a 5 mm PFG (Pulsed Field Gradient) probe equipped with a z-axis gradient amplifier with active shielding coil, in a 7,04 T Varian Unity plus spectrometer. DgcsteSL pulses sequence was used; 64 transients were collected for each of 20 gradient values; and the gradient strength was varied between 1 and 45 Gcm⁻¹; 2,1 ms rectangular gradients pulses were used and the diffusion time Δ was set at 2,5 s. The recycling delay time was 45 s (5.T₁) and the total acquisition time was 16,5 hours. To assess the consistency of our measured ⁷⁷Se diffusion coefficient, we compared these values with the equivalent ¹H DOSY ones, i.e., with a firmly established technique for the same sample. The results obtained for the diffusion coefficients for both ⁷⁷Se and ¹H were the same, within the error bars. It was also found that , ⁷⁷Se DOSY can be alternatively used in cases where proton DOSY experiments are poorly resolved.

The result of DOSY¹ (Diffusion Ordered Spectroscopy) is a two-dimensional spectrum where chemical shifts (on the horizontal axis) and diffusion constants (on the vertical axis) for a mixture can be obtained simultaneously, so that the diffusion coefficients of species can determined resembling be а chromatographic separation. Thus, DOSY experiments can, and have indeed been used, molecular interactions² study and to associations.3

The natural abundance of ⁷⁷Se is 7.5%, approximately six times greater than that of ¹³C. Furthermore, the sensitivity of ⁷⁷Se nucleus is three times higher than that of ¹³C.⁴ Thus, ⁷⁷Se is an interesting nucleus for NMR studies - DOSY experiments included. Accordingly, we prepared a sample with both non-enriched diphenyldiselenide (0.1092 g), **1**, and selenophene (0.159 g), **2** in CDCl₃.

⁷⁷Se DOSY experiments were carried out at room temperature (25°C) at a frequency of 57.24 MHz using a 5 mm PFG (Pulsed Field Gradient) probe equipped with a z-axis gradient amplifier with active shielding coil, in a 7.04 T Varian Unity plus spectrometer. ⁷⁷Se spectra were referenced at 462 ppm to diphenyldiselenide, in CDCl₃, as an external standard. DgcsteSL pulses sequence was used; 64 transients were collected for each of 20 gradient values; and the gradient strength was varied between 1 and 45 Gcm⁻¹; 2.1 ms rectangular gradients pulses were used and the diffusion time Δ was set at 0.25 s. The recycling delay time was 45 s (5xT₁) and the total acquisition time was 16.5 hours.

T₁ was determined for the studied nucleus, using the inversion recovery pulse sequence: $(\pi - \tau - \pi/2)$. The values for ⁷⁷Se chemical shift and diffusion coefficient were, respectively, 462.8 ppm and 1.79x10⁻⁹ m²s⁻¹ for the diphenyldiselenide and 611.1 ppm and 2.13x10⁻⁹ m²s⁻¹ for selenophene.

To assess the consistency of our measured ⁷⁷Se diffusion coefficient, we compared these values with the equivalent ¹H DOSY ones, *i.e.*, with a firmly established technique, for the same sample. The obtained results for the diffusion coefficients for both ⁷⁷Se and ¹H were

the same, within the error bars. It was also found that ⁷⁷Se DOSY can be alternatively used in cases where proton DOSY experiments are poorly resolved.

Acknowledgements

The authors thank UFPE, CNPq, PROFIX and Instituto do Milênio de Materiais Complexos.

References

- K.F. Morris, C.S. Johnson, J. Am. Chem. Soc. 114 (1992) 3139.
- 2. G.S. Kapur, E.J. Cabrita, S. Berger, *Tetrahedron Lett.* **41** (2000) 7181.
- 3. I. Keresztes, P.G. Williard, *J. Am. Chem. Soc.* **122** (2000) 10228.
- H. Duddeck, Progress in NMR Spectroscopy, 27 (1995) 1.