# Total NMR Assignment of Furanditerpene Derivatives from *Pterodon Polygalaeflorus Benth.*

#### J. M. Resende, P. A. Castelo–Branco, D. Piló–Veloso

Departamento de Química-ICEx-UFMG - Belo Horizonte, MG, Brazil

# M. M. M. Rubinger Departamento de Química-CCE-UFV - Viçosa, MG, Brazil

### D. L. Ferreira–Alves

Departamento de Farmacologia-ICB-UFMG - Belo Horizonte, MG, Brazil

# Keywords: NMR; furanditerpenes; vouacapanoids

Abstract: Pterodon polygalaeflorus Benth, popularly known as "Sucupira-branca", is a well-known tree in the central region of Brazil. The seeds of this tree are used in folk medicine as anti-rheumatic, antiinflammatory and analgesic preparations. From the hexane extract of its fruits, 6α.7βdihydroxyvouacapan-17 $\beta$ -oic acid (ADV), a furanditerpene that presents anti-inflammatory, analgesic, and plant growth regulatory activities was isolated. ADV (1) and some derivatives have previously been studied to obtain some clues about chemical structure-biological activity relationship. Some ADV esters containing an OH group at C-6 have already been obtained. Both hydroxyl and carbonyl groups can receive hydrogen bonds, while the hydroxyl group can also donate a hydrogen bond. With the aim of mapping the biological receptor, the replacement of the OH group at C-6 of ADV by a carbonyl group was made. Therefore, the 6-oxo-voucapan- $7\alpha$ ,  $17\beta$ -lactone (3) derivative was prepared. Here we described the NMR studies of four ester derivatives obtained from (3), which were as follows: methyl 6- $0 \times 0.7 \alpha$ -hydroxyvouacapan-17 $\beta$ -oate (4), ethyl 6-0x0-7 $\beta$ -hydroxyvouacapan-17 $\beta$ -oate (5), propyl 6-0x0- $7\alpha$ -hydroxyvouacapan-17 $\beta$ -oate (**6**), 2-methoxy-ethyl 6-oxo- $7\alpha$ -hydroxyvouacapan-17 $\beta$ -oate (**7**). Their resonances were unequivocally assigned by the use of 1D (<sup>1</sup>H and <sup>13</sup>C NMR, DEPT-135, NOE difference), and 2D (COSY, HMQC, HMBC) NMR techniques.

The seeds of *Pterodon polygalaeflorus* Benth, popularly known as "*Sucupira-branca*" are used in folk medicine as anti-rheumatic, anti-inflammatory and analgesic preparations.<sup>1</sup> From the hexane extract of its fruits it was isolated the  $6\alpha$ , $7\beta$ -dihydroxyvouacapan- $17\beta$ oic acid (ADV, **1**, Figure 1)<sup>2</sup>, a furanditerpene that presents anti-inflammatory, analgesic, and plant growth regulatory activities.<sup>2,3</sup>

To obtain some information with respect to the chemical structure-biological activity relationship, ADV, as well as its lactone ( $6\alpha$ hydroxyvoucapan- $7\beta$ , $17\beta$ -lactone, HVL, **2**, Figure 1) and some of their ester and amide derivatives were previously studied.<sup>4</sup> The NH, OH, and CO groups are able to receive hydrogen bonds, while the NH and OH groups can also donate a hydrogen to hydrogen bonds.

To map the receptor structure, the replacement of the OH group at C-6 of the ADV lactone derivative, HVL (2) by a carbonyl group was undertaken. The total NMR characterization of four esters (4-7) derived from the POL (3, Figure 1) is described herein.

The total NMR assignment of the esters **4-7** is discussed below. The synthesis of these compounds has already been reported.<sup>5</sup> The 1D and 2D NMR techniques of <sup>1</sup>H, <sup>13</sup>C, DEPT-135, NOE difference; COSY, HMQC, and HMBC were used.

dorila@dedalus.lcc.ufmg.br

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker *AVANCE* DRX 400 spectrometer, in CDCl<sub>3</sub>. Chemical shifts are reported in parts per million ( $\delta$  units), relative to TMS as internal standard, and scalar coupling constants (*J*) are reported in hertz. Pulse conditions were as follows: for <sup>1</sup>H NMR spectra - dwell time (DW) 149.600 µs, acquisition time (AQ) 3.985 s, number of transients (NS) 16, recycle delay (RD) 1.000 s; for <sup>13</sup>C NMR spectra – DW 31.400 µs, AQ 2.058 s, NS 1024, RD 2.000 s, decoupling multiple resonance method Waltz-16; for COSYGR – DW 125.000 µs, AQ 0.116 s, NS 1, DS 8, RD 2.000 s, data points (TD) 1024 (F2) and 256 (F1); HMQC – DW 54.400

μs, AQ 0.058, NS 16, RD 2.000 s, TD 1024 (F2) and 512 (F1); HMBC – DW 54.400 μs, AQ 0.223 s, NS 32, RD 2.000, delay for long range coupling (D6) 0.070 s, TD 2048 (F2) and 512 (F1).

Figure 1 shows the synthetic route to obtain the esters **4-7**. The synthesis accomplishment was verified by the appearance of the hydroxyl group hydrogen resonance around  $\delta$  3.6 in the <sup>1</sup>H NMR spectra of all the esters. Other pieces of evidence for the obtention of the esters are provided by the <sup>1</sup>H and <sup>13</sup>C resonances due to the R groups shown in Figure 1 from **4** to **7**.



Figure 1. Synthetic route of C-6 ceto ester derivatives (4-7) of ADV.<sup>6,7</sup>

The HMQC contour map was useful to attribute resonance signals to nonmagnetically equivalent *gem* hydrogens, since they resonate at different chemical shifts. To illustrate, an expansion of ester **6** <sup>13</sup>C NMR spectrum is shown in Figure 2, where C-11 and C-22 present the same  $\delta_C$  22.0.



Figure 2. Partial <sup>13</sup>C NMR spectrum of ester 6 in CDCI<sub>3</sub> at 100 MHz.

Since both signals are due to CH<sub>2</sub>, they were also overlapped in DEPT-135. Therefore, they were assigned from the HMQC analysis (upper right side of Figure 2) by the correlations of  $\delta_{\rm C}$  22.0 with H-11ax ( $\delta$  2.50), H-11eq ( $\delta$  2.75), and H-22 ( $\delta$  1.70). The HMBC contour maps were useful for the assignment of non-hydrogenated carbon signals and also for distinguishing the CH<sub>3</sub>-20 ( $\delta_{\rm H}$  0.91;  $\delta_{\rm C}$  15.1) from both CH<sub>3</sub>-18 ( $\delta_{\rm H}$  0.97;  $\delta_{\rm C}$  32.5) and CH<sub>3</sub>-19 ( $\delta_{\rm H}$ 1.32;  $\delta_{\rm C}$  22.2) signals. Thus, H-20 correlates via  ${}^{3}J$  with both C-1 ( $\delta_{C}$  38.6) and C-9 ( $\delta_{\rm C}$ 48.1) signals, and via <sup>2</sup>J with C-10 ( $\delta$ 42.8). The NOE difference experiment distinguished between CH<sub>3</sub>-18 and CH<sub>3</sub>-19 signals. NMR techniques confirmed the synthesis and the structures of the esters.

# Acknowledgements

The authors thank CNPq and FAPEMIG.

# References

- M. P. Correa, Dicionário de Plantas Úteis do Brasil e das Plantas Exóticas Cultivadas, M A-IBDF: Rio de Janeiro, 1978.
- Nunan et al; Braz. J. Med. Biol. Res. 15 (1982) 450.
- 3. J. Demuner, J. Nat. Prod. 59 (1996) 770.
- A. Oliveira, Abstracts of the 22<sup>th</sup> Annual Meeting of SBQ, Poços de Caldas, Brazil, 1999, MD-027.
- P.A. Castelo-Branco, CD of 16<sup>th</sup> Regional Meeting of SBQ, Viçosa, 2002 and Abstracts of the 25<sup>th</sup> Annual Meeting of the SBQ, Poços de Caldas. Brazil, 2002, MD-050.