Using ¹H NMR and Chiral Chemical Shift Reagent to Study Intramolecular Racemization of Pentacyclo Pure Enantiomer by Thermal Dyotropic Reaction

V. E. U. Costa*, J. E. D. Martins

Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre RS, Brazil valentim@ig.ufrgs.br

Keywords: Policyclic compounds, dyotropic reaction, chiral chemical shift reagent

Abstract: In this work, we describe the use of ¹H NMR using a chiral chemical shift reagent as an alternative method to gas chromatography on a chiral column to determine the enantiomeric excess of the enantiomer (+)-10-exo-hydroxy-pentacyclo [$6.2.1.1^{3.6}.0^{2.7}.0^{5.9}$] dodeca-4-one (+)-1 and the thermal dyotropic racemization process, which occurs when compound (+)-1 is submitted to chiral gas chromatography analysis.

Resumo: Neste trabalho, descreve-se o uso de RMN de Hidrogênio utilizando-se reagente de deslocamento químico quiral, como um método alternativo à cromatografia gasosa em coluna quiral, para determinar o excesso enantiomérico do enantiomero (+)-10-exo-hidroxi-pentaciclo [6.2.1.1^{3,6}.0^{2,7}.0^{5,9}] dodeca-4-one (+)-1, assim como a sua racemização através de um processo térmico diotrópico quando o mesmo é analisado por cromatografia gasosa em coluna quiral.

Introduction

In the last years, our group has been interested in the spectroscopic aspects of polycyclic compounds such as bicyclic, tricyclic, tetracyclic, pentacyclic and hexacyclic derivatives.¹ The kinetic resolution of polycyclic compounds has been one of our recent focus with the aim to obtain enantiopure alcohols.² Proton nuclear magnetic resonance (¹H NMR) spectroscopy with a chiral chemical shift reagent is an alternative method to determine the enantiomeric excess of chiral compounds when other methods like gas chromatography (GC) using a chiral column fail.^{1b, c}

Herein, we describe the use of a chiral chemical shift reagent as an alternative method to GC on a chiral column. The aim is to determine the racemization of pentacyclic alcohol (+)-1 by intramolecular thermal dyotropic reaction as well as its enantiomeric excess.

NMR spectra were measured with a VARIAN VXR200 ($B_0 = 4.7$ T) and YH-300 ($B_0 = 7.05$ T). Chemical shifts are expressed as δ (ppm) relative to TMS as an internal standard and the J values are given in Hz. The chromatograms were obtained using a Shimadzu GC-17A Gas Chromatograph equipped with a FID detector. The parameters used for chiral analysis were as follows: Injector 250 °C; detector 300 °C; oven 170 °C for 15 min then 1 °C/min until 200 ⁰C;column pressure 100 kPa; column flow 33 mL/min; split ratio 1:10. Column β-Dex 120 chiral GC column (30m x 0.25 mm). Optical rotations were measured in a Perkin-Elmer 341 polarimeter with a 0.1 dm cell at a temperature of 20°C.

Enantiomeric excess analysis by ¹H NMR spectroscopy using the chiral chemical shift reagent

High resolution of signals has been achieved for the enantiomeric proton H(10) (α -OAC) of (\pm)-**2**. Sequential addition of the chiral chemical

Experimental

shift reagent tris [3-(heptafluoropropylhydroxymethylene) - (+) camphorate] europium (III) ^{1b,c} Eu(hfc)₃ (5 mg) to a CDCl₃ solution of (±)-**2** (10 mg) in a 5 mm NMR tube, provided the best result with 25 mg of Eu(hfc)₃. The difference in chemical shift ($\Delta\Delta\delta$) of enantiomeric hydrogen H(10) (α -OAc) was 0.16 ppm.

Results and Discussion

In order to obtain the enantiopure form of pentacyclic 1, the racemic mixture (\pm) -1 was transesterified with vinyl acetate catalyzed by lipase from Candida *rugosa*, giving the acetylated compound (–)-2 and remaining alcohol (+)-1 (Scheme 1).³

(i) Vynyl acetate, Lipase from Candida rugosa, 5 hours, 46 % of convertion

Scheme 1. Kinetic resolution of (±)-1

After five hours with a chemical conversion of 46 %, the products were separated by silica gel column. Firstly we analyzed the enantiomeric excesses of the products by GC in a chiral column, but this technique did not allow good separation of signals for the racemic standard (±)-2, although we have tried it with different methods and columns. However, for the racemic standard (±)-1 good separation of signals was possible using such a technique. Figure 1 shows the analysis of the reaction mixture of the kinetic resolution of (±)-1 by GC on a chiral column. Figure 1 shows a

unique signal at 31.4 minutes relative to ester (-)-2 and two signals at a 1:1 ratio relative to alcohol (+)-1, possibly indicating racemization. As separation of enantiomeric signals of standard (±)-2 using GC was not effective, the enantiomeric excess analysis of (-)-2 was performed by ¹H NMR using the chiral chemical shift reagent tris [3-(heptafluoropropylhydroxymethylene)-(+)camphorate] europium (III) (Eu (hfc)₃). This analysis presented high resolution of signals for the enantiomeric protons H (10) (α -OAc) of the standard (±)-2 (Figure 2).

Figure 1. Chromatogram of the reaction mixture

Figure 2. ¹H NMR spectrum of (±)-2 with 20 mg of Eu (hfc)₃.

Figure **3** shows the enantiomeric excess analysis of chiral ester (–)-2 by ¹H NMR using the chiral chemical shift reagent. This analysis showed enantiomeric excess up to 95 % for the keto-acetate (–)-2. However, the GC analysis of (+)-1 using a chiral column showed the two enantiomeric signals at a ratio of 1:1, corresponding to the racemate (±)-1 (Scheme 2 and Figure 4).

Figure 3. 1H NMR spectrum of (-)-2 with 20 mg of Eu(hfc)₃

Scheme 2. Racemization of (+)-1

Figure 4. Chiral GC analysis showing racemization of (+)-1

This result was somewhat unexpected, and we thus performed the enantiomeric excess analysis of (+)-1 using ¹H NMR with a chiral chemical shift reagent. However, the standard (\pm)-1 did not present a satisfactory separation of enantiomeric signals. We then determined the enantiomeric excess of (+)-1 by preparing its acetylated derivative through the reaction of (+)-1 with acetic anhydride (Scheme 3). The acetylated compound (+)-2 was then analyzed by 1 H NMR under the same conditions employed for (–)-2, showing an enantiomeric excess of 85% (Figure 5).

(i) acetic anhydride, DMAP, CH₂Cl₂, r. t Scheme 3. Acetylation of (+)-1

Figure 5. 1H NMR spectrum of (+)-2 with 20 mg of Eu(hfc)3

The result of the analysis of (+)-1 by chiral GC (Figure 4), when racemization occurred, could be explained by a dyotropic intramolecular

rearrangement producing the correspondent racemate (Scheme 4).

Scheme 4. Racemization process of (+)-1

This data suggests that the high temperature used in GC analysis can promote this dyotropic rearrangement. To confirm this hypothesis, we heated the compound (+)-1 at 170 °C in a vacuum-sealed ampoule, and we observed the same dyotropic intramolecular rearrangement.

Conclusion

It is impossible to determine the enantiomeric excess of (+)-1 by GC analysis on a chiral column, due to thermal racemization by a dyotropic process resulting from orbital symmetry. ¹H NMR, using the chiral chemical shift reagent, (Eu (hfc)₃), has shown to be an excellent alternative method to overcome this problem. This method showed an enantiomeric excess >95% for (-)-2 and 85% for (+)-1.

Acknowledgements

We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support. We also thank Amano Enzyme USA co. Ltd. for kindly providing lipase AY "Amano" 30 (*Candida rugosa*).

References

- (a) V. E. U. Costa, J. Alifantes, M. Axt, M. E. S. Mollmann, P. R. Seidl, *J. Braz. Chem. Soc.* **10** (1999) 341; (b) V. E. U. Costa, M. Axt, *Magn. Reson. Chem.* **34** (1996) 929; (c) M. Axt, J. Alifantes, V. E. U. Costa, *J. Chem. Soc.*, *Perkin Trans* 2 **12** (1999) 2783.
- (a) V. E. U. Costa, J. Alifantes, J. E. D. Martins, Tetrahedron: *Asymmetry* 9 (1998) 2579; (b) V. E. U. Costa, F. D. P. Morisso, Tetrahedron: *Asymmetry* 12 (2001) 2641; (c) V. E. U. Costa, J. Alifantes, A. G. Nichele, Tetrahedron: *Asymmetry* 13 (2002) 2019; (d) L. F. de Oliveira, V. E. U. Costa, Tetrahedron: *Asymmetry* 15 (2004) 2583.
- V. E. U. Costa, J. Alifantes, A. R. Pohlmann, J. E. D. Martins, Tetrahedron: *Asymmetry* 14 (2003) 683.