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Abstract: Most NMR users, despite needing to understand the theoretical basis of NMR, do not have 
much knowledge on that area. This work is the first part of a series of description and concept 
introduction on the description and understanding, in a simple way, some details on NMR pulse 
sequences using the very simple NMR vector model (semi-classic model). Specifically, this work tries 
to show the concordance between the very popular vector model and the quantum mechanical results 
in relation to with the exciting process in NMR. The presented proposal could lead to several 
discussions and disagreements on this topic. 
 

 

Introduction 

All the NMR users need to understand how the 

different NMR pulse sequences work in order 

to make the necessary experimental 

adjustments, to interpret correctly the spectral 

results and to choose the most appropriate 

pulse sequence to obtain the desired 

information. The most complete description of 

NMR is accomplished using density matrix 

theory,
1
 which is a complex methodology that 

requires a deep knowledge on quantum 

mechanics to use it.  The simpler but also 

efficient spin product formalism
2
 is much easily 

used to understand NMR experiments but, 

being directly derived from the density matrix 

theory, needs a significant knowledge of 

quantum mechanics in order to understand 

how it works and how to interpret its results. 

The alternative for NMR users that are not 

sufficiently familiar with quantum mechanics is 

the semi-classical vector formalism.
3
 In this 

series of reviews we will discuss different 

aspects of this vector formalism, with emphasis 

on its application to understand how NMR 

works and to explain the functioning of some 

pulse sequences and its limitations. This first 

part of the series is focused on an apparently 

simple but very complex part of NMR: the 

generation of detectable transverse 

magnetization. In order to accomplish this is 

necessary to review several very basic NMR 

concepts and to maintain certain parallelism 

with the quantum mechanical methods.   

 

The fundamental basis of NMR 

The first topic that needs to be explained is 

that the vectors used in the semi-classical 

vector formalism come from the classical 

representation of the magnetic moment µµµµ
r

 of 

the nuclei. We know that only the nuclei that 

posses a magnetic moment different from zero 

are detected using NMR, as their magnetic 

moment is subjected to different energy levels 

when they are in the presence of a magnetic 

field oB .  The nuclear magnetic moment 

energy levels are defined by the quantum 

mechanical solution of the equation that 

describes the angular momentum of an atomic 
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nucleus ( L
r

) inside a magnetic field. The 

description of the process to determine those 

energy levels is discussed in the literature.
4
 A 

simple description of this phenomenon is that 

the number of energy states for a single 

nucleus ( numberE ) is determined by its spin 

number I  according to Equation 1. 

 

12 ++++==== IEnumber
      Eq. 1 

 

According to Equation 1, a nucleus with spin ½ 

, like 
1
H or 

13
C, will have two energy levels, 

while a nucleus with spin 1, such as 
2
H, will 

have three energy levels.  

The question now is what is nuclear spin? The 

complete answer for this is quite complex, as 

nuclear spin is a quantum property that has no 

equivalent in classical physics. For now, we 

can simply say that nuclear spin is a 

movement property of the atomic nucleus that 

originates its magnetic moment, and that it can 

be predicted using the nuclear shell theory, 

which is very nicely described in the book of 

Bonagamba and Freitas.
5
 The nuclear spin I  

corresponds to a quantum number that surges 

naturally from the solution of the equation that 

describes the angular momentum of a nucleus 

and varies as shown in Equation 2. The 

nucleus with the highest nuclear spin is 
93

Nb 

( I = 9/2). 

 

2

9

2

5
2
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1
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1
...,,,,I ====           Eq. 2 

 

The solution of the equation that describes the 

angular momentum of a nucleus also 

introduces the magnetic quantum number Im , 

which is closely related to I , as shown in 

Equation 3. 

 

I...I,I,Im I ++++++++−−−−++++−−−−−−−−==== 21      Eq. 3 

 

In fact, the number of states of the system is 

determined by Im . For example, if a nucleus 

has spin ½ it posses two Im  values; Im = +½ 

and -½, according to Equation 3, meaning that 

is has two energy levels. The relation of Im  

with the energy of the system indicates that 

this quantum number is somehow determined 

by the orientation of the magnetic moment 

vector µµµµ
r

, while I  is related to the magnitude 

of µµµµ
r

. This means that µµµµ
r

 has two orientations 

allowed by the quantum mechanics results.
4
 If 

we chose the z  axis as the reference 

coordinate, the two allowed directions for µµµµ
r

 

are the αααα  orientation, where µµµµ
r

 is 54.7
o
 from 

the z  direction ( ααααµµµµ
r

), and the ββββ  orientation, 

where µµµµ
r

 is 125.3
o
 from z  ( ββββµµµµ

r
).

4
 This can be 

easily seen in Figure 1. 

 

z

µα

µβ

θα

θβ

 

Figure 1. Orientation of the magnetic moment of a 
spin ½ nucleus 

 

The orientation of the magnetic moment µµµµ
r

 

can be described by its projection on the z  

axis, as shown in Figure 2. It can be seen that 

ααααµµµµ
r

 leads to a projection ααααµµµµz

r
, which is 

directed along the z++++ direction. The projection 
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of ββββµµµµ
r

 ( ββββµµµµz

r
) is aligned in the opposite 

direction.  

 

µβ

µα

z

µzα

µzβ

 

 
 
Figure 2. Projections of the nuclear magnetic 
moment. 

 

From the quantum mechanical treatment of 

NMR the energy of those states is given by 

Equation 4,
4
 where γγγγ is the magnetogiric ratio 

and mI is the magnetic quantum number. 

 

oI BmE hγγγγ====     Eq. 4 

 

For nuclei with I=1/2 the values for mI are +½ 

and -½ for the αααα and ββββ states, respectively. 

Accordingly, the energy difference between 

both spin ½ states is given by Equation 5, as 

∆∆∆∆mI for the permitted transitions in NMR for 

any nuclei corresponds to ±1 (see Figure 3). 

 

oBE hγγγγ∆∆∆∆ ====        Eq. 5 

 

In the presence of a magnetic field, the 

energies of the different states ( ααααE  and ββββE ) 

of a nucleus are degenerate ( ββββαααα EE ==== ), 

since in those conditions the energy 

associated to the nuclear magnetic moment 

does not depend on its orientation. However, 

when a nucleus with spin ½ is set inside a 

magnetic field oB
r

oriented along the z  axis, 

the αααα  state, which z -projection is parallel 

to oB
r

, has a lower energy than the ββββ  state, 

which is antiparallel to oB
r

. 

 

 

E

Eα

Eβ

∆E

 

Figure 3. Energy levels for a spin ½ nucleus. 

 

 

If we use the Plank condition, ∆∆∆∆E=hνννν, we can 

convert Equation 5 into the fundamental NMR 

equation, Equation 6. 

 

oB
ππππ

γγγγ
νννν

2
====    Eq. 6 

 

We know that Equation 5 describes de 

behavior of atomic nuclei without electrons 

inside a magnetic field. The presence of the 

electros causes several effects on the 

frequency. Those effects are separated into 

diamagnetic, paramagnetic, anisotropic and 

intermolecular (like solvent) effects, which are 

included inside the shielding tensor σσσσ. The 

shielding tensor σσσσ is responsible for the very 

important chemical shift effect. The inclusion of 

those effects in Equation 6 yields the more 

general Equation 7. 

 

(((( ))))σσσσ
ππππ

γγγγ
νννν −−−−==== 1

2
oB        Eq. 7 
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In principle, Equation 7 describes the NMR 

frequencies for a nucleus in a molecule, but it 

does not consider the coupling of the magnetic 

moment of that nucleus with the other 

magnetic nuclei present in the molecule. There 

are two main ways of coupling between 

magnetic nuclei, the spin-spin coupling, which 

occurs via the electrons of the bonds 

separating the nuclei, and the dipolar coupling, 

which corresponds to the direct interaction 

between the magnetic moments of the nuclei. 

In this first review we will consider only the 

spin-spin coupling effect. The equation that 

includes the spin-spin coupling effects between 

two nuclei A and X is derived from the 

quantum mechanical description of NMR and 

corresponds, for first order spin-spin coupling, 

to Equations 8 and 9.
4 

(((( )))) IXIAAXAoA mmjB ±±±±−−−−==== σσσσ
ππππ

γγγγ
νννν 1

2
   Eq. 8 

 

(((( )))) IXIAAXXoX mmjB ±±±±−−−−==== σσσσ
ππππ

γγγγ
νννν 1

2
     Eq. 9 

 

If the nuclei A and X have spin ½ the 

resonance frequencies for both nuclei are 

given by Equations 10 to 13. 

4
1

AX
AA

j
++++==== νννννννν     Eq. 10 

 

4
2

AX
AA

j
−−−−==== νννννννν     Eq. 11 

 

4
1

AX
XX

j
++++==== νννννννν     Eq. 12 

 

4
1

AX
XX

j
−−−−==== νννννννν     Eq. 13 

 

We know that putting together the values 

obtained from Equations 10 to 13 we obtain 

the NMR spectrum shown in Figure 4. 

 

 

νA2A1ν

Aν

X1ν νX2

νX

j
AX AX

j

 

Figure 4. Spectrum of a coupled system formed by nuclei A and X with spin ½ 

 

Spectra with first order coupling such as the 

one shown in Figure 4 are easily predicted 

using Equation 14, where n is the number of 

nuclei coupled to the observed nucleus and I is 

the nuclear spin of those nuclei, to predict the 

multiplicity of the signal for each nucleus and 

the Pascal triangle to obtain the relative 

intensity for each line.
6
  

 

12 ++++==== nItyMultiplici    Eq. 14 

 

 

Magnetic moment precession and spin 

excitation 
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As mentioned before, the magnetic moment of 

a spin ½ nucleus inside a magnetic field has 

only two possible orientations, the lowest 

energy one, which projection along the Z 

direction is parallel to the magnetic field, αααα, 

and the highest energy one, which projection is 

antiparallel to Bo, ββββ.  Lets consider the 

behavior of a αααα magnetic moment. The 

tendency of Bo is to align the magnetic 

moment to the Z direction, but Quantum 

Mechanics only allows for the exchange of the 

angles formed by the Z axis and µµµµαααα (θθθθαααα) to θθθθββββ. 

The alignment of the magnetic moment with 

the Z axis (θθθθ = 0) is not allowed by the 

Quantum Mechanics. Because of that, µµµµαααα will 

only do precession around the +Z axis at the 

Larmor frequency of the nucleus, as shown in 

Equation 7. The precession of the magnetic 

moment is shown in Figure 5. A similar effect 

happens with a nucleus which magnetic 

moment is ββββ, with the only difference that its 

precession is on the opposite direction (see 

Figure 5). 

In order to make the system absorb energy, it 

is necessary to change µµµµαααα to µµµµββββ , and that can 

be accomplished only using a second 

magnetic field B1. Evidently, this new magnetic 

field must be applied on the XY plane in order 

to promote the µµµµαααα to µµµµββββ transition. 

 

 

Z

X

Y

Bo

αµ

µ
β

 

 

Figure 5. Precession of the magnetic moments 

around Bo. 

 

The effect of B1 is not so simple to understand 

because of the precession of the magnetic 

moments around Bo and the simultaneous 

promotion of µµµµββββ to µµµµαααα  as well as other effects. 

The rotation of the magnetic moments requires 

that B1 be precessing at the Larmor Frequency 

in order to have a cumulative effect on the 

magnetic moments. In fact, if B1 has a 

precession frequency different from the Larmor 

frequency its effect on the magnetic moment 

will be null, as shown in Figure 6. 

In order to change the state of the magnetic 

moment from αααα to ββββ, it is necessary to change 

the magnetic moment angle from θθθθαααα to θθθθββββ. In 

Figure 6 is shown the effect of a static B1 

aligned with the X axis on the magnetic 

moment in two opposite positions. In Figure 6A 

the effect of B1 is to reduce the angle θθθθαααα, while 

in Figure 6B is to increase θθθθαααα. 
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Figure 6. Effect of a static B1 set along the X axis on µµµµαααα when the XY projection of the magnetic moment is 
aligned with the –Y axis (A) and the +Y axis (B). 

 

 

 

Therefore, because B1 is static, it has no effect 

on the angle of the precessing magnetic 

moment. This is a special case of B1 

precessing with a frequency different from the 

Larmor frequency. In order to have a 

continuous and cumulative effect on the 

magnetic moment B1 must be in precession at 

the Larmor frequency, thus maintaining 

constant its position relative to the XY 

projection of the magnetic moment, as shown 

is Figure 7. 

 

 

  

B1

µα

Bo

Y

X

Z

θ θ

Z
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Figure 7.  Effect of B1 rotating at the Larmor frequency on µµµµαααα when the XY projection of the magnetic moment is 
aligned with the –Y axis (A) and the +Y axis (B). 
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The results from quantum mechanics are clear 

regarding the fact that only the two angles θθθθαααα 

and θθθθββββ are allowed for the system, therefore, 

the effect of a rotating B1 will be to change θθθθαααα 

to θθθθββββ or vice versa. 

Fortunately the electromagnetic radiation 

contains an oscillating magnetic field, which is 

the result of two magnetic fields that rotate with 

the same frequency but in opposite direction, 

as shown in Figure 8. The magnetic field that 

rotates in the same direction as the magnetic 

moment at the Larmor frequency, corresponds 

to B1. As explained before, the magnetic field 

that rotates in the opposite direction has no 

effect on µµµµ.  

The frequency of the rotating magnetic fields 

B1 and –B1 is simply determined by the 

frequency of the electromagnetic radiation 

used. In the case of NMR with the magnetic 

fields used (up to 21.15 Tesla) the Larmor 

frequencies necessary for the excitation of all 

the different nuclei are inside the range of the 

radiofrequency (usually from 20 to 900 MHz).

  

 

B

E

B

= B

= -B

1

1

A

B

C

 

Figure 8. A-Magnetic and electric oscillating fields that compose the electromagnetic radiation. B-Oscillating 
magnetic field from the electromagnetic radiation. C-Rotating magnetic fields B1 and –B1. 
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Net Magnetization and Effect of B1 

It is well known that a sample o N spin ½ 

atoms in equilibrium inside a magnetic fiend Bo 

is distributed between the two magnetic 

moments states µµµµαααα and µµµµββββ. The populations of 

such energy levels are respectively Nαααα and Nββββ, 

where Nαααα + Nββββ= N. 

Clearly, when the magnetic field B1 is applied, 

the populations of the µµµµαααα and µµµµββββ energy levels 

change, as the equilibrium is altered. If we 

know that the only transitions that are allowed 

by the influence of B1 for each nucleus are µµµµαααα 

→ µµµµββββ or µµµµββββ → µµµµαααα how B1 generates a 

magnetization on the XY plane that 

corresponds with Mo? For this we need first to 

determine what is Mo. 

If we go back to the equilibrium condition 

without the influence of B1, the system can be 

represented by Figure 9.  

If we decompose a single magnetic moment 

into its projections on the XY plane and along 

the Z axis, we obtain Figure 10, where it can 

be seen that µµµµZ = µµµµ cosθθθθ. 

 

 

 

 

 

β
µ

µα

Bo

Y

X

Z

Nαααα

Nββββ

 

Figure 9. Distribution of N magnetic moments in equilibrium under the influence of an external magnetic field Bo. 
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Figure 10. Decomposition of the magnetic moment µµµµ into its projection µµµµXY and µµµµZ 

 

 

If we now decompose each magnetic moment 

µµµµ from Figure 9 into its projections on the XY 

plane (µµµµXY) and along the Z axis (µµµµZ), we obtain 

Figure 11. From Figure 11 it is easy to see that 

MXY=0. On the other hand, according to the 

results from Figure 9 we observe that MZ = Nαααα 

µµµµz and M-Z = Nββββ µµµµ-Z. Since Eαααα < Eββββ it is 

expected that Nαααα > Nββββ, therefore, the net 

magnetization Mo corresponds to MZ + M-Z and 

Mo = Nαααα µµµµz + Nββββ µµµµ-Z. 

 

 

Bo

Y

X

Z

MXY

MZ

M-Z
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Z

X
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Bo

 

Figure 11.  Addition of the projections of the magnetic moments of N spin ½ nuclei inside an external magnetic 
field Bo. 
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We also know that µµµµ-Z  = - µµµµz, therefore Mo = 

(Nαααα - Nββββ) µµµµz. Finally, from the quantum 

mechanical results
4
 µµµµZ = γγγγ(h/2ππππ) mI and since 

for this case mI = ½ we can conclude that  µµµµZ = 

γγγγ(h/4ππππ) and therefore Mo is described by 

Equation 15: 

 

Mo = (Nαααα - Nββββ) γγγγ(h/4ππππ)     Eq. 15 

 

In order to determine Nαααα - Nββββ we can make use 

of the Boltzmann equation for the population 

distribution at thermal equilibrium for two 

energy levels, Equation 16. 

 

kT

E

e
N

N ∆∆∆∆

αααα

ββββ −−−−

====          Eq. 16 

 

In Equation 15 k corresponds to the Boltzmann 

constant (1.380 6504×10
−23

 J K
-1

) and T to the 

absolute equilibrium temperature of the 

system. We have already seen that for the 

NMR system oBE hγγγγ∆∆∆∆ ====  (Equation 5), 

therefore Equation 16 becomes Equation 17. 

kT

Bo

e
N

N hγγγγ

αααα

ββββ −−−−

====        Eq. 17 

According to the fact that ∆E for NMR is much 

smaller than the thermal energy (kT) we can 

approximate Equation 16 to Equation 18: 

 

kT

B

N

N
ohγγγγ

αααα

ββββ
−−−−==== 1       or     

kT

B
NNN ohγγγγ

ααααααααββββ −−−−====     Eq. 18 

 

Again, since ∆∆∆∆E for NMR is very small, almost 

zero, the population of both energy levels is 

about the same, that is Nαααα ≈≈≈≈ Nββββ and since N = 

Nαααα + Nββββ we can use the approximation Nαααα = ½ 

N and substitute the second Nαααα for that value 

in Equation 18, thus leading to Equation 19: 

 

kT

BN
NN ohγγγγ

ββββαααα
2

====−−−−      Eq. 19 

 

Finally, if we substitute Equation 19 into 

Equation 15 we obtain a numeric description of 

the net magnetization of the system in thermal 

equilibrium, as shown by Equation 20: 

 

oo B
kT

N
M

22

4

hγγγγ
====       Eq. 20 

 

If we have a solution with a 100 µM sample of 

a compound that contains 20 hydrogen atoms 

per molecule for analysis using 
1
H NMR in a 

300 MHz (7.05 Tesla) spectrometer it means 

that we will have about 1.2x10
21

 protium atoms 

in the sample (N = 1.2x10
21

) and the net 

magnetization of that sample will correspond to 

4.09x10
-35

 J T
-1 

(or A m
2
). For this calculation 

there were used the values γγγγH = 26.75 rad s
-1

 

T
-1

; h  =1.054x10
-34

 rad J s; k = 1.38x10
-23

 J K
-

1
. If we consider that the magnetic moment of a 

free protium nucleus is 1.41x10
-26

 J T
-1

and that 

all the 1.2x10
21

 nuclei have their magnetic 

moments aligned with Bo the net 

magnetization would be 1.69x10
-5

 J T
-1

, a 

value that is about 30 orders of magnitude 

greater than Mo. Therefore, the net 

magnetization in equilibrium is quite small, 

corresponding to 2.42x10
-28

% of the 

magnetization generated by the simple sum of 

all the present nuclei. This is the explanation to 

the low sensitivity of NMR when compared to 

other spectroscopic techniques. 

The question now is how to align this net 

magnetization Mo with the XY plane using B1. 
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For this we must know that B1 has two effects 

on the rotating magnetic moments of the 

sample. In order to better understand the 

vector involved in this part of the explanation it 

is important to introduce the well known 

concept of the rotating coordinate system, 

which is simply a coordinate system in which 

the X and Y axis rotate at the same frequency 

that B1 (which is the Larmor frequency of the 

nuclear magnetic moments). In such 

coordinate system B1 will be static, usually 

aligned along one of the rotation axis, X’ for 

example. In the same way, the nuclei magnetic 

moments µµµµ will also be static in the absence of 

B1, as shown in Figure 12B. In the moment 

that B1 is introduced in the system along X’, 

the torque effect of B1 on the magnetic 

moments will lead them to loose the 

homogeneous distribution around the 

precession cone, concentrating them at the 

right location in the cone relative to B1 (Figure 

12C). This agglomeration of the magnetic 

moment in a single part of the cone is called a 

coherence, as shown in Figure 12D. It is 

interesting to notice that the magnetic 

moments that are inside the ββββ cone also align 

to the right of B1, thus being concentrated in a 

way that their projection on the X’Y’ plane is 

aligned opposite to the projection of the 

magnetic moments form the αααα cone, and the 

sum of both projections on X’Y’ plane originate 

Mo (Figure 12E). The size of Mxy is easily 

calculated knowing that the size of the residual 

vector (µµµµres) is given by (Nαααα - Nββββ)(1.41x10
-26

) 

and that Nαααα - Nββββ is given by Equation 19 and 

for the case in study corresponds to 2.92x10
5
. 

According to this we have that µµµµres = 4.12x10
-21

 

J T
-1

 and Mxy = µµµµres cos(90-θθθθ) = 4.12x10
-21

 x 

0.814 J T
-1

 = 3.35x10
-21

 J T
-1

, which is a much 

greater value than Mo (14 orders of magnitude 

greater) and therefore does not correspond to 

that value.  

The second effect of B1 is to exchange the 

populations of the αααα and ββββ energy states by 

changing the magnetic moment vector angle 

from θθθθαααα to θθθθββββ and vice versa. Since the system 

is absorbing energy lets suppose that Nαααα is 

decreased to Nαααα - n while Nββββ is increased to Nββββ 

+ n by the effect of B1. Such effect would 

decrease the residual magnetic moment (µµµµres) 

from Figure 12E to the value µµµµres
*
 = µµµµres - 

2n(1.41x10
-26

) and Mxy to Mxy
*
 = 0.814 [µµµµres - 

2n(1.41x10
-26

].  If we want to have Mxy = Mo 

then we have to resolve the equation 4.09x10
-

35
 = 0.814[4.12x10

-21
 - 2n(1.41x10

-26
)], which 

affords n = 1.46x10
5
. This result indicates that 

when B1 is applied for a sufficient time to 

generate a Mxy = Mo it increases the population 

of the ββββ state of the system in about 7.3x10
5
 

nuclei. The time B1 is applied to obtain this 

condition is called t90 as it corresponds to the 

time that it is necessary to give a result that is 

equivalent to rotate Mo, which originally aligned 

with the +Z axis, 90
o
 to the –Y axis. The effect 

obtained according Figure 12 when B1 is on for 

t90 microseconds is usually represented in the 

NMR books as shown on Figure 13. 

 

 

 

 

 

 



Ann. Magn. Reson. Vol. 6, Issues 3, 56-68, 2007                                                                 AUREMN © 

 
 

67 
 

β
µ

µα

Bo

Y

X

Z

A B

Z

αµ

µ
β

X'

Y'

B1

B1

Z

α
µ

µ
β

X'

Y'

DE

Y'

X'

Z

B1

M xy

Y'

X'

β
µ

µα

Z

C

µ
res

 

 

Figure 12. Effect of B1 on the nuclei magnetic moments generating a coherence, which projection on the X’Y’ 
plane corresponds to Mo. 
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Figure 13. Classical representation of a 90
o
 pulse. 

 

Evidently, this method can be used to explain 

how to obtain other excitation angles like t180 or 

t45 simply by calculating the size of the final 

Mxy magnetization and determining n in each 

case.   
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Conclusion 

The semi-classical vector model, with the 

presented coherence concept, is appropriate to 

explain how to carry out excitation in NMR, but 

this methodology is ignored by most NMR 

books, which discuss the effect of B1 without 

considering the rules of quantum mechanics. 

The model shown here might be criticized on 

the basis of the fact that introducing another 

magnetic field (B1 in this case), which is in 

resonance with the Larmor frequency of the 

spins changes the nature of the system under 

consideration, but this argument is not 

complete to explain the effect of B1, being 

necessary to use the concept of magnetic 

coherence to accomplish this. 
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