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Abstract: A large variety of data, resulting from physical and chemical experiments, may be well 
described by a linear combination of decaying exponentials, such as those related to the distribution 
pore size of oil rocks. The relevant information sought is contained in the spectrum or mathematical 
transform, that is, the dependence of the coefficients in the linear combination with respect to the time 
constants of the exponentials in the basis. Computing the transform is a problem which, generally, 
requires regularization, and that has been previously analyzed by a number of authors. This work 
reports a comprehensive study of multi-exponential, fit where we have introduced two major 
improvements. First, the direct resolution of linear systems in the least-squares sense using the QR 
formalism instead of the normal equations, which efficiently reduces rounding errors, always present in 

the resolution of this type of ill defined problems, and second, a robust and simple criterion to select 
the best value for the regularization parameter is given, which strongly improves the existing previous 
ones. It is important to remark that this method not only fits mult-exponential decays, but those related 
to natural processes where logo-normal exponential distributions are found rather than a collection of 
discrete exponentials. 
 

 

Introduction 

    We deal with the computation of a discrete 

Laplace transform of decaying functions of 

time (signals) for which a set of measured 

values is known. This situation is frequently 

found in physical and chemical data analyses. 

Nuclear Magnetic Resonance (NMR) 

experiments in certain cases (relaxometry), 

laser induced chemical reactions, etc., produce 

time dependent signals that may be described 

as a sum of decaying exponentials. Proper 

analysis of these data provides unique insight 

into, for example, pore size distribution in 

porous materials, oil rocks, the solid/liquid 

fraction in butter and animal fats, and various 

time constants involved in chained chemical 

reactions.
1, 7

 

    The computation of transforms is required 

because of their important theoretical and 

practical properties, but in the numerical 

practice some substantial shortcomings must 

be considered: the set of times for which the 

signal is known is finite, the known values are 

contaminated by errors, and furthermore the 

transform is not computed for a continuous 

range of exponents but rather only for a finite 

set of “time constants”. 

 

Basic statement of the problem 

    Let n  measured values of a signal ts  

correspond to as many different observation 

times, as expressed by the set of pairs: 

 

nis,t ii ,,1;         (1) 

 

    It is assumed that the it  sequence is 

strictly increasing. This is not essential, but it 

provides some simplification. 

    A set of m  decreasing exponential functions 

is selected by choosing as many different 

positive time constants, enumerated in 

mailto:martin@famaf.unc.edu.ar


Ann. Magn. Reson. Vol. 7, Issue 1, 55-73, 2008                                                                    AUREMN   
 

 

increasing order: 
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    We look for a linear combination of these 

functions (“multi-exponential fit”): 
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that in some sense to be precisely defined 

must fit the signal s(t). 

 

Baseline shift correction 

   The measured values is  are assumed to 

approximate the values of a positive, strictly 

decreasing function tf  that tends to 0  as 

t . Errors affecting these values are 

of two kinds: systematic errors (“baseline 

shift”) due to the measuring device and 

random errors. 

    In the experience gathered through the 

processing of many cases we have found that, 

while the systematic errors cannot be 

adequately represented by a constant term, a 

first-degree polynomial BAt  performs 

sufficiently well. Good estimates Ã  and B~  are 

needed for the coefficient A  (“drift”) and the 

constant term B  (“initial shift”). As for the 

random errors i , in the absence of additional 

information, are assumed to come from a 

normal distribution with zero mean and 

unknown variance. Therefore, summing up, for 

every n,,i 1 : 

 

iiii BAt)t(fs    (4) 

 

    The baseline shift should be subtracted from 

the measured values before these values are 

used for any computation. In practice, the 

original is  will be replaced by: 

 

B~tA~sg
iii

  (5) 

 

    It is important to recall that all the available 

information comes from a set of measured 

values, apart from the theoretical hypotheses 

stated above. 

    We now describe the selected procedure to 

obtain reliable estimates for A  and B  

whenever it is possible. The same algorithm 

leads to an estimation of the variance of the 

random observational errors. 

    Considering the ideal case where random 

observational errors are absent, and the 

coefficient A  is exactly known so that 

AA~ . The constant term B  is not 

important here. Thus, since tf  is a strictly 

decreasing function, so is the ig  sequence. 

    In practice, and as a consequence of the 

observational errors, the ig  sequence ceases 

to be monotonically decreasing, starting with a 

certain value ofi . From that point on, it 

oscillates erratically. 

    The preceding considerations can be taken 

as a loose definition of what may be termed 

the “tail” of the table of data values. For values 

of t  in this tail, tf  is so close to zero that it 

becomes negligible in comparison to the 

random errors i , and the is  values are then 

nothing more than random approximations of 

BAt
i

. The ensuing computation of the 

estimates for the baseline and for the variance 

of the random observational errors relies upon 
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the existence of a sufficiently long tail. 

    The baseline is then defined from the least-

squares solutions, for each k , of the over-

determined linear systems: 

 

n) ..., 1,(i   sBAt)t(C
iiikk

   (6) 

 

with three unknowns . and , , BACk  The 

value of  k   (between 1 and m) is finally 

selected to yield the least sum of squares of 

differences of both sides when considering all 

the m  systems. 

    These systems are solved (in the sense of 

least squares) by the same algorithm used for 

the solution of the main problem, to be 

described in the following sections, with a 

special treatment for unknowns A  and B . 

This is because the s'C
j  will be subject to 

non-negativity conditions, while A  and B   are 

not restricted with respect to their signs. 

 

Set of coefficients: optimization with 

regularization 

    In principle, the least squares criterion is 

adopted: the set m,,j;Cj 1   is to 

be determined such that the quadratic 

functional: 

 

n
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takes its minimum value. 

    Problems of this kind are ill defined,
3, 6, 8, 12

 

i.e. the presence of small errors (noise) in the 

data may produce drastic changes in the 

spectral distribution (coefficients). This is due 

to the fact that the linear independence of a 

basis consisting of such exponential functions 

is very weak in terms of the usual precision of 

floating-point operations. For this reason, the 

application of some smoothing procedure 

becomes mandatory.
3, 6, 8, 12  

In our case, the 

following has been chosen: the functional to be 

minimized will be 

10 SSS  (8) 

where  is a positive parameter (degree of 

smoothing), and 1S  is defined as: 
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    The normalization parameters q  (scaling 

factor) and h  (mean logarithmic spacing) are 

conveniently chosen in order to obtain a 

uniform interpretation of the range of values of 

 when comparing different applications. The 

scaling factor q  is defined as the quotient 

between the numbers of terms in each sum, 

that is, )m/(n 2 . If the time constants 

are uniformly spaced in the logarithmic scale 

(as it happens in our algorithm), h  is just this 

spacing. In this case, 1S  corresponds to sums 

of squares of second-order divided differences 
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(roughly, squares of curvatures).  

    The expansion of partial derivatives starts 

with:
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Here, defining the inner product of two vectors of dimension n , 

n

i

iibab,a

1

      (11) 

one may write for short  

m
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with an obvious definition of the vectors included in this expression. On the other side, for 

23 mk , 
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    Some additional conditions are still to be 

imposed. But, to the only purpose of 

completing a preliminary statement for reasons 

of a better comprehension, let us for the 

moment suppose we are dealing with a 

problem of optimization of the quadratic 

functional that has been defined, without any 

constraints. Then the (unique) solution of this 

unconstrained problem is characterized as the 

solution of the linear system in the jC : 
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Matrix formulation 

To express the problem in terms of matrix algebra, it is convenient to define: 
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A matrix B  (“band”) related to second-order divided differences can be defined as 

matrix  2                  
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The divided differences are: 
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Then we have: 
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C qS 21                        m  - vector 

 

22
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BCBrV

TTT

TT

C

q
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    The solution of the unconstrained problem is the coefficient vector C  that satisfies the linear 

system: 

gVCBBVV
TTT

q  m  - vector (16) 
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    This is precisely the system of normal 

equations for the least-squares solution of an 

over-determined linear system which we now 

proceed to write. This is apparently a 

backward path, but there exist strong 

computational reasons for doing so. The 

normal equations do not yield an optimal 

algorithm because the system is often ill-

conditioned. We have devised an algorithm 

adapted to our problem, based on the QR  

decomposition [13] and applied to an adequate 

over-determined system, not resorting to the 

normal equations. Moreover, the application of 

the required non-negativity constraints will then 

become extremely simple. 

    Let  U  be the V  matrix augmented by the  

2m   rows of the matrix B q . Thus, U  

has 2mn   rows and  m   columns. 

Similarly, let g’ be the column vector g  

augmented by 2m   zeros. Then the over-

determined linear system for the unconstrained 

problem is:  

U C = g’      )mn( 2   –  vector  (17) 

 

which in the case  = 0  is equivalent to: 

V C = g          n  – vector  (18) 

 

 Constraints 

    At this point, it is convenient to move on to 

the statement of the additional conditions still 

to be specified. These are, simply, that the 

coefficients m,,j;Cj 1  of the 

exponentials must be nonnegative. In this case 

there is also a unique solution such that the 

functional S   takes its minimum value, and the 

optimality conditions determining it are the 

following: 

 

s)constraint (active00

s)constraint (passive00

j

j

j

j

C

S
C

C

S
C

  (19) 

    It is not known beforehand which of the 

coefficients must be positive and which ones 

must be zero. The essential part of the work 

reported here consists of an algorithm that, in 

a finite number of steps, determines such 

distribution and consequently the optimal multi-

exponential fit. 

    In order to write down the matrix formulation 

of the situation just described, we consider the 

set of integers from 1  to m  expressed as the 

union of two disjoint sets 0K  and 1K . 

    The integers k  corresponding to the 

passive constraints belong to 1K . If we are 

dealing with the optimal solution we must 

have: 

 

100 Kk
C

S
,C

k

k
 (20) 

 

In the case of the active constraints, there are 

two possibilities: 

 

s)constraint active(strongly 0,0
k

k
C

S
C   (21) 

or 

s)constraint active(weakly 00

k

k
C

S
,C

                                (22) 

 

    The integers k  corresponding to the 

strongly active constraints belong to 0K . The 

remaining integers, corresponding to the 

weakly active constraints, may belong to either 

set. This introduces some ambiguity from the 

theoretical point of view, but it is inherent to the 
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algorithm, since a set defined by a system of 

equalities is ill-defined in floating-point 

computation. In fact, the algorithm efficiently 

overcomes this ambiguity, as will be later 

explained. 

    Let now D  be a diagonal matrix of order m , 

its diagonal elements being defined as follows: 

0kkd  for 0Kk  and 1kkd  for 

1Kk . 

    Either 0K  or 1K  may be empty. If 0K  is 

empty, we have  D = I.  If 1K  is empty,  D = 0. 

 

Computational Algorithm 

Summing up, the solution of the optimization 

problem for each value given to  is the 

vector C satisfying simultaneously: 

 

- The following over-determined linear system, 

in the least squares sense 

 

UDC = g’ )mn( 2  - vector           (23) 

 

- The following systems of inequalities, for 

every component: 

 

 vectors-                  
0

m
UU T

gVC

C

T
(24) 

 

for some particular definition of the diagonal 

matrix D, that is, for one of the possible 

partitions of the set of integers from 1  to m  

into two subsets 0K  and 1K , according to the 

previous specifications. As established by the 

relevant theory, this partition is unique, except 

for the possible ambiguity produced by one or 

more coefficients for which 0

j

j
C

S
C  

holds. This ambiguity can be resolved in any 

way, not affecting the final results. 

    The computational algorithm that has been 

implemented starts with an arbitrary (but 

reasonable) initial definition of the sets 0K  and 

1K . Herewith, the matrix D is defined too. The 

system of equations is solved in the least-

squares sense by an algorithm based on the 

QR decomposition. If its solution, namely 

vector C, satisfies all the inequalities, then the 

solution to the optimization problem has been 

found. Otherwise, one or more indices are 

transferred from one set to the other, and the 

computational loop is repeated with the new 

definition of  D. 

    Numerical experience has shown that, 

without proper precautions, repeated partitions 

sometimes occur, thereby inducing an infinite 

repetition of the computational loop. In some 

instances, this happened as a consequence of 

rounding errors, in situations close to the 

earlier mentioned ambiguity cases. For this 

reason, some safeguards of the following 

types have been incorporated into the 

algorithm  

1) In each computational loop, only one 

index is transferred from one set to the other, 

even when the inequalities fail to be satisfied 

for more than one index.  

2) A count is kept for the transfers of 

each index, giving priority for further changes 

to the indexes that have accumulated the 

fewest transfers.  

3) The non-negativity conditions are 

gradually relaxed, thereby clearing the cases 

of ambiguity without undercutting the precision 

of the results, which are always expressed with 

more than enough significant digits. 

 

Recommended Value of  α  (degree of 
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smoothing) 

    In our software, the computational algorithm 

just described is carried on for a fixed set of 

values of . Except for  = 0, all other 

values are positive and uniformly spaced in a 

logarithmic scale. In every case, the 

coefficients of the exponentials (the j
C ) are 

determined for mj1 ,  in 

correspondence with the time constants j
T  . 

    Based on solid empirical evidence, we have 

developed an original criterion in order to 

determine the recommended degree of 

smoothing of the -dependent function )T(C
j

. Physical intuition calls for clipping sharp 

peaks and softening slopes, without over-

smoothing. 

    Starting with the raw data, we first define 

approximate second derivatives )t(f
~

i
 for 

ni1 , from segmental least-squares 

polynomial approximations of the data values. 

Notice that the second derivatives are 

independent of the baseline. 

    For each value of  in turn, the second 

derivatives 
i
t  of the respective multi-

exponential fit are computed for ni1 . 

Next, the mean-square difference of f
~

and  

 for all  n   times is defined as a function of 

: 

 

n

i

ii
)t()t(f

~

mn
)(z

1

21
  (25) 

 

    Then, for all values of  in the fixed set 

except the first and the last, second 

differences of z  with respect to   are 

computed: 

 

)(z)(z)(z)(z
kkkk 11

2 2    (26) 

 

    Up to a constant factor, these second 

differences are approximations of the 

respective logarithmic second derivatives, but 

the factor may be disregarded because relative 

values are relevant. 

    In practical cases, the function  )(z
2

  

has a very characteristic behavior. It is quite 

stable for small values of , then followed by 

a steep rise (in absolute value). 

Recommended values of   are those just 

smaller than the starting abscissa of the sharp 

slope. 

 

Comments and Observations 

    The theory dealing with the minimization of 

a quadratic functional with non-negativity 

conditions is a simple case of application of the 

outstanding theory for convex functional and 

more general conditions. The optimality 

conditions that have been quoted are a 

particular instance of the ones known as 

Karush-Kuhn-Tucker (KKT) conditions.
10, 11

 

    Several authors
3, 7

 have proposed different 

smoothing procedures, leaving a wide margin 

to experiment with other choices. The criterion 

recommended by Fordham, Sezginer and 

Hall,
12

  in a different context, incorporates the 

use of the logarithmic derivative 
log

Slog
0

d

d
,  

which can be easily computed as a by-product 

of our algorithm. 

 

Results 

 

    In order to test the method, above 

developed, a large variety of data were 
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produced and analyzed. In this section two 

representative cases are presented and fully 

discussed. In addition an experimental result of 

pore size distribution measurement, by means 

of NMR, is also presented. 

    The general procedure to produce the data 

–time decaying signals are considered- to be 

analyzed is as follows: 

1) A varying number of decaying 

exponentials, characterized by their time 

constants, are multiplied by different sets of 

coefficients and the results are added up. The 

sum of each set of coefficients is, arbitrarily, 

set equal to 100. In this way the “pure” signals 

are produced.  

2) These pure signals are corrupted by 

noise. The noises are generated using a 

resident subroutine in Fortran.
14 

They follow a 

Gaussian distribution centered at 0 and with a 

standard deviation of 1. These noises are 

multiplied by factors spanning the range 1 

through 5 and added up to the pure signals, 

thus obtaining signals with varying signal/noise 

ratios.  

3) Finally various linear base-line drifts 

were added up. These base-lines were added 

to account for possible real experimental 

situations where this effect  is present and 

must be accounted for in order to properly 

analyze the signals, therefore avoiding 

obtaining wrong results.  

    Thus, by adding pure signals, noises and 

base-line drifts the working signals to be 

analyzed are obtained. These working signals 

are built trying to simulate those obtained in a 

(Carr-Purcell-Meiboom-Gill CPMG-T2 decay of 

a NMR signal
3,15

). For the ease of the analyses 

the data are generated at integer time values 

in the range 1-5000 ms. 

    Figures 1 to 3 and 4 to 6 depict the various 

contributions required to obtain the working 

signals WSA and WSB, whose relevant 

parameters are given in the following 

equations: 

 

ii

i

i

i

i

iiii

ttBL

Noise AtN

mst
t

tPSA

tBLtNtPSAtWSA

310*2

5 ofdeviation standar  aith          w                    

 0at  centered noiseGaussian   

 5000,....,3,2,1            
50
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     (27) 
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Figure 1. The pure signal A. 

 

 

Fig. 2 Gaussian noise added to pure signal A 

(NoiseA), centered at 0 and with a 
standard deviation of 5. 

 

 

 
Figure 3 Base-line drift added to pure signal A, 

equation (26). 
 

 

Figure 4. The pure signal B. 
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Figure  5. Gaussian noise added to pure signal B 

(NoiseB), centered at 0 and with a 
standard deviation of 2. 

 

 

 

Figure 6. Base-line drift added to pure signal B, 

equation (27). 

 

    WSA and WSB are the working signals A 

and B respectively, which are shown in figures 

7 and 8; PSA and PSB are the pure signals A 

and B; NoiseA and NoiseB are Gaussian 

noises centered at 0 and with standard 

deviations of 5 and 2, respectively. 

    In order to check the behavior of the method 

developed above a set of 101 time constants is 

chosen spanning the rage 1 – 10000 ms 

equally spaced on a logarithmic scale. 

    Once the set of time constants is chosen 

what is left is to choose the regularization 

parameter (RP) and to calculate the base-line 

and the coefficients. The proper determination 

of the base-line is important particularly for the 

correct determination of long time constants 

coefficients. Also, it is important to determine a 

correct value for the RP since the time 

constants distribution depends on the chosen 

value. The “optimum” value for the RP 

depends on the expertise of the operator, who 

is strongly guided by the numerical help 

previously given in the text. Let us discuss the 

results obtained for both cases.  

 

Case A 

As shown in equation (27) this is the case of a 

dominant exponential with significant noise.  

 

Some points are worth mentioning: 

. As depicted in figure 9, obtained with no 

regularization, the coefficients show violent 

changes in the vicinity of 50 ms, this is the kind 

of unwanted situations to expect the 

regularization will solve. 

. A spike shows up at the shortest time 

constant used, i.e. 1 ms. This spike arises from 

the region where the data points have a 

spacing similar or comparable to that of one of 

the time constants employed, and the noise 

which in this time region has the maximum 

impact. 
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Figure  7.  Working signal A obtained by adding up the above three shown contributions. The red line is the fit 

obtained to the data using the values given in figure 6. The base-line parameters determined are: 
Slope = 0.0019939 Arbitrary Units/ms and the Intercept = 0.0046282 Arbitrary Units. 

 

 

 

Figur 8. Working signal B obtained by adding up the above three shown contributions. The red line is the fit 

obtained to the data using the values given in figure 12. The base-line parameters determined are: Slope 
= 0.0018762 Arbitrary Units/ms and the Intercept = 10.4192705 Arbitrary Units. 
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Figure 9. The values obtained for the coefficients and their corresponding time constants are depicted. 

The typical violent oscillations of the amplitudes, when no regularization is applied, 
corresponding to neighboring time constants are clearly seen. Also, spurious coefficients are 
generated at the shortest time constants, clearly lacking of any physical meaning. Both 
situations are satisfactorily solved when regularization is applied as may be seen in the results 
shown in figure 6. The addition of all the amplitudes is 100. 

 

    The regularization adequately copes with 

these two situations as may be seen in figure 

10, where it is depicted the coefficient 

distribution which shows in, in the first place, 

that a smooth distribution is obtained in the 

neighborhood of 50 ms, and, in the second 

place, the spike, with a time constant of 1 ms, 

shown in figure 9 becomes unnoticeable. 

 

 

 

Figure 10. The time constants and their corresponding amplitudes, when regularization is applied, are shown. 

Comparing with figure 5 it may be seen that the violent oscillations and that the spurious signal at the 
shortest time constants have disappeared. The addition of all the amplitudes is 100. 
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    The base-line determined shows an 

excellent agreement as may be seen by 

comparing the values given in equation (26) 

with those shown in the caption to figure 9. 

    Thus, by proper determination of the base-

line and of the regularization parameter a bell-

shaped coefficient distribution is determined, 

peaked at about 50 ms and which is able to 

closely reproduce the working signal as may 

be seen in figure 7. 

 

Case B 

    The construction of this working signal is 

given in equation (27). Figure 11 depicts the 

coefficient distribution clearly showing the 

presence of two well defined time constants, 

10 and 100 ms, with equal weights 

(amplitudes) of about 50 arbitrary units. Figure 

12 depicts the much smoother distribution, 

looking like a double bell centered at about 10 

and 100 ms. The addition of the coefficients of 

each bell adds up to about 50, as expected. 

 

 

 

 

 

 

Figure 11. The values obtained for the coefficients and their corresponding time constants, when no 

regularization is applied, are depicted. The addition of all the amplitudes is 100. 

 

 



Ann. Magn. Reson. Vol. 7, Issue 1, 55-73, 2008                                                                    AUREMN   
 

 

 

Figure 12. The time constants and their corresponding amplitudes, when regularization is applied, are shown. 

The addition of all the amplitudes is 100. 
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    Figure 13 depicts a numerical generated 

function ( z( )), equation (25), depending 

upon the  (the RP) which runs over 10 orders 

of magnitude from 10
-10

 to 1. Sudden changes 

are clearly seen as a function of . First, a 

relatively smooth behavior is exhibited, 

followed by a sudden change that is reached 

while increasing . The “best” value for  is to 

be taken towards the left of the sudden change 

and where the first premonitory effects are 

detected. This type of behavior is similar in all 

of the cases we have dealt with. There is some 

imprecision in the sense that the transition 

from smooth region to that of the sudden 

change is somewhat subjective and not 

precisely defined. However, on the one hand, 

a reasonably trained operator will determine 

the value of  within an order of magnitude, 

and on the other hand this order of magnitude 

variation does not significantly affect the 

coefficient distribution function. Anyway, this 

method to determine the RP  greatly 

improves on previous methods.
4,12, 16, 18 

 

 

 

Figure 13. 
2
z( ), equation (25), versus the regularization parameter . 

 

 

    An experimental result of pore size 

distribution measurement, by means of NMR-

T2,
3, 5

 of a natural brine saturated rock and 

after centrifugation is presented in figures 14 

and 15. The difference between the two fits 

shows the movable fluids and the pore size 

distribution affected. 
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Figure 14. 
1
H NMR-T2 decay signal, of water in saturated sandstone rock, both in the saturated and centrifuged 

conditions. 
 

 

 

 

Figure 15.  Pore size distribution corresponding to the saturated sandstone, measured in figure 14, for both the 

saturated and centrifuged conditions. 
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Conclusions 

The final conclusions of the method developed 

in this work are: 

Includes a proper treatment of base-line drifts 

and shifts; 

The QR decomposition employed to find the 

solution of the least-squares linear system 

greatly reduces the characteristic rounding up 

errors presented in solving these kinds of ill-

defined problems; and 

Provides a clear procedure to precisely 

determine the regularization parameter . 

Therefore, the distribution coefficient function 

determined is a reliable one, which is not the 

case in previous works. 
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Appendix 

Least-squares solution of linear systems using  QR  decompositions 

 

 The title evokes an extensive subject to which we want to refer only briefly, with application to 

our particular problem. Let  Ax = b  be the system for which we want a least-squares solution. Here 

(as in VC = g), matrix A is  mn ,  x and b are vectors of dimensions m  and n  respectively. 

Normally, mn . 

 It is always possible, in different ways, to find a decomposition  A = QR  where Q is an 

orthogonal matrix of order n   while R is  mn   and upper triangular; that is, the element in row i

and columnj  is 0 whenever ji . In particular, all rows for which mi  are composed by 

zeros. 

 By definition, Q is orthogonal if 
T

QQ
1

. Then the system Ax = b is equivalent to 

bQRx
T

. This equivalence is not only algebraic but also metric, because an orthogonal 

transformation preserves distances and angles. The Euclidean norm is the same for both residual 

vectors 

bQRxbAx
T

 

but the second system can be easily solved by back substitution. 

 The transformation Q is obtained as a product of orthogonal transformations: mQ...QQQ 21

. In our algorithm we have chosen to use “reflectors” [13]. 

 If the matrix R has full rank m , the least-squares solution is unique. If R is rank-defective 

(rank < m ), as shown by the value 0 of one or more of its diagonal elements, the respective 

unknowns can be given any value. For our application it makes sense to give them the value 0. 

 Both sides of   Ax = b   are successively pre-multiplied by  
T

m

T

,

T
Q...,Q,Q 21

. After the  k th  

pre-multiplication, the transformed matrix in the left side is upper triangular in its first  k   columns. 

Then 
T

kQ 1
 is defined as a function of the next column, which was previously selected as the column 

vector of maximum norm among those  km  remaining. This implies a reordering of columns and 

unknowns, conveniently expressed by a permutation matrix P. Recall that any permutation matrix is 

orthogonal. 

 Thus, the decomposition of the original matrix A is in fact 

                              AP = QR 

and the algorithm proceeds as follows: 

                             b)xP(QR)xP)(AP(Ax
TT

 

                             bQ)xP(R
TT

 

 The partial derivatives of the sum of squares of the residuals are expressed as components of 

the gradient: 

    )bQxRP(PRS
TTT2  


